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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2822

A SPECIAL INVESTIGATION TO DEVELOP A GENERAL METHOD FOR
THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS

By M. M. Frocht and R. Guernsey, dJr.
SUMMARY

The method of strain measurement after annealing is reviewed and
found to be unsatisfactory for the materisls available in this country.
A new, genersgl method is described for the photoelastic determination
of the principal stresses at any point of a general body subjected to
arbitrary loads. The method has been applied to & sphere subjected to
diametral compressive loads. The results show possibilities of high
accuracy. '

INTRODUCTION

It is known that purely photoelastic procedures cannot solve the
genersl three-dimensional stress problem. The photoelastic method fur-
nishes five independent equations, whereas the complete specification
of the state of stress at a point requires six relations to determine
six unknown stress components.

In order to obtain & sixth relation it has been suggested that the
frozen slices removed from the model be annealed and strain measurements
be made after annealing. This suggestion has recently received a rather
extensive trestment from Prigoravsky and Preiss in Russia (reference 1).
A careful snalysis of this suggested method shows that its successful
spplication requires model materials having relatively low values of
Poisson's ratio at the elevated temperatures used in the freezing proc-
ess. Such materials are not available in this country. Fosterite and
Bakelite, which are the best available materials, have Polsson's ratios
approximately equal to 1/2 It is further shown that the method of strain
measurement after annesling breaks down when this ratio approaches 1/2

In this report a new method is described which does not depend on
Poisson's ratio and therefore can be used with models made of Fosterite
and Bakelite. This method employs frozen stress patterns from normal
and oblique incidence. The separation of the principal stresses is
obtained by the numerical integration of one of the differentisl
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equations of equilibrium in Cartesian coordinates rather than by strain
measurement after annealing which involves Poissonfs ratioc., It will be
shown that this permits the determination of-all six stress components
at each point of & body. '

The report consists of three parts., The first part comprises a
survey and enslysis of the method in three-dimensional photoelasticity
which rests on the freezing and slicing processes and strain measure-
ment efter annealing. The second part presents the theory of the new
method. The third part contains the spplication of the new method to
the determination of stresses in a dlametrically compressed sphere.

The investigation was conducted in the Photoelastic Laboratory of
the Mechanics Department—at the Illinois Institute of Technology under
the sponsorship and with the finasncial assistance of the National Advisory
Committee for Aeronautics.

The Research Corporation provided the funds for the fellowship held
by Mr. Roscoe Guernsey, Jr.

Mr. David Landsberg, Assistant Research Engineer in Experimental
Stress Analysis, assisted in all experimentel phases of the work. It~
is a pleasure to acknowledge his cooperation,

Acknowledgment is algo due Mrs. Dora L, Frocht for her assistance-
in the translation of the paper by Prigorovsky and Preiss (reference 1).

SYMBOLS
Ox, Oy, Oy normal stresses, psi
Txys Tyzs, Tex shearing stresses, psi
Og, Tg stresses on an inclined plane, psi
Py, Q principal stresses, ﬁsi
P, q' secondary principal stresses in XY-plane, psi
p", Q" secondary principal stresses in XZ-plene, psi
Ny, Oy, Dy normel stresses in fringes

Nyy» Dygzs Dpx shearing stresses in fringes
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n', n', n
Rgys Doy
6

fringe orders at normal incidence for slices parallel
to XY-plane, XZ-plane, and YZ-plane, respectlvely

fringe orders at oblique incidence for rotations about
Y-axis and Z-axis, respectively

angle of rotation of a slicej; also angle defining an
inclined plane

isoclinic parameters at normal Incidence for slices
parallel to XY-plane, XZ-plane, and YZ-plane,
respectively

isoclinic parameter at oblique incidence for rotation
about Y-axis

shear fringe value of slice, psi per fringe

shear fringe value for slices parallel to XY-plane and
XZ-plane, respectively

shear fringe value of material, psi per fringe per inch
linear strains, inches per inch

Young's modulus, psi

Poisson's ratio

load, pounds

area of equatorial plene of sphere, square inches

area of surfaces of contact, square inches

radius of sphere, inches

radius of contact areas, inches

normal stresses in terms of P/A
shearing stresses in terms of P/A
contact pressure in terms of. P/A,

contact shearing stress in terms of P/Ac



NACA TN 2822

SURVEY AND ANALYSIS OF EXISTING METHODS

Frozen Stresses and Oblique Incidence

Frozen pattern.- It is now well established that elastic stress
systems can be fixed or frozen into models made of certain diphase
plastics and that such models with frozen stresses can be sliced into
thin sections without disturbing the fixed pattern (references 2, 3,
and 4). .Observations of such slices in a polariscope yield the rela-
tive retardations as well as the 1soclinic parameters at—each point of
the pattern.

Oblique incidence.- The use of oblique incidence of & collimated
beam of light, as suggested by Drucker and Mindlin, adds materially to
the information obtainable photoelastically (references 5 and 6). The
retardation and isoclinics at normsl incldence are a function of the
secondary principal stresses in the plane of the slice, while those at
oblique incidence depend on the secondary principal stresses in a plane
perpendlicular to the wave normal at each point of. the slice,

The basic relatlion for oblique incidence with rotation about the
Z-axis 1s given by the following expression

- 2
(2Fnez)2 = L ch - Uz) + (Uy - Ux) sin29 + Txy sin 29] +
)
2
)"‘(sz cos 6 + Tyz sin 9) } (l)

The system of notation used in this report is shown in figure 1.
Normel stresses are positive when tensile and negative when compressive,
The four components of shear in the XY-plane are referred to either as
the 7Txy or the Tyx shear system, and the sign of this system is
positive when the shearing components sre as shown in figure 1 (refer-
ence T, par. 1.3). Similarly the shear system ‘in the YZ-plane is posi-
tive 1if the components are- as shown in figure 1. No signs are attached
to individual shearing stress components, their directions being deter-
mined by inspection (reference T, par. 8.2).

By combining the data from five stress patterns of different
obliqueness 1t is possible to determine the three differences between
the normsl stress components. and the three systems of shearing stressges
at each point in the slice (for convenience the plane of the Sllce 1s
taken as one of thé coordinate planes).
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It can be shown that from the five gquantities obtalned with the
ald of oblique incidence it is possible in turn to obtein the three
principal shears at all points of the section. This is equivalent to
determining Mohr's circle for a three-dimensional state of stress except
for its origin which remains indeterminate.

Limitations of purely photoelastic data.- Except for special cases,
the optical data by themselves are insufficient for the determination of
the individual principal stresses. This limitation results from the
fact that isotropic stress systems produce no photoelastic effects. Con-
sequently, two states of stress differing by an arbitrary isotropic
system produce equal photoelastic effects.

The method employing scattered light, or the Tyndall effect, which
was developed in this country by Weller (references 8 and 9) and inde-
pendently by Menges (reference 10) suffers from the same limitation.

. The method of convergent light employed by Hiltscher (reference 11)
and by Kuske (reference 12) mekes it possible to determine also the
directions of the principal stresses but not their magnitudes.

Separation of Principal Stresses

Free surfaces.- The limitation mentioned above does not hold at
free boundary surfaces. A free surface is subjected to only two prin-
cipal stresses, similar to those in plane stress systems. Tangential
slices yield directly the difference between the principal surface
stresses., If in addition a slice is taken normal to the surface and
parallel to one principal stress, it is possible to determine the indi-
vidual principel stresses on the surface (fig. 2). This method has been
employed by Leven and Frocht (reference 13) to determine the principal
stresses on the surface of Diesel engine valves. Leven (reference 1k4)
has also applied this method to the problem of surface stresses in tor-
sion, and Hetényi (reference 15) has applied it to threaded connections.
In these applications the faces of the slice were oriented to be normal
to the direction of a collimated polarized beam.

In special cases- the combingtion of obligque and normal incidence
leads to a complete determination of the principal stresses, Using this
combination, the stress distribution in Saint Venant torsion was deter-
mined (reference 16).

Planes of symmetry.- For the special case where a plane of symmetry
exists Jessop (reference 17) has developed an extension of the Lemé-
Maxwell equations (Filon's graphical integration) to three-dimensional
cases, By means of these extended equations it is possible to determine
the stresses along the exis of symmetry. However, the method lacks
generality. :
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Strain measurement—after annealing.- It has been suggested by Kuske
(reference 18) that mechanical strain measurements after annealing in
conjunction with the freezing method might be used to provide the addi-
tional relation necessary for the determination of the principal stresses
at a general point. If it be assumed that the differences between the
three normal stress components at a point have been found photoelasti-
cally from égquation (1), there result:

Oy = Oy = CZy

Oy = Ox = Cyx (2)

Oz - Ox = Czx

where the C's represent constants. If now the slice-from the model
containing the frozen stresses is ennealed, the state of stress is '
relieved and the thickness of the slice at each point will return to
its original unstressed value., From this change in thickness, if it
can be measured with accuracy, the strain at a point—in a direction
perpendicular to the slice can be computed. Taking this direction as
the Z-axis, for instance, the strain would be ¢€5. Then from Hooke's

lawy

2 = g[oz - v(ox + oy]] (38)
vhich may be written as
€y = %El - 2V)og + V(oz - oy) + V(oz - .crxﬂ (3b)
from which
- E€y - V(Uz(; ij;v; V(og - ox) (ka)

In view of equations (2) this gives the stress component o, after
which ox and oy are readily found. The entire state of stress has
thus been determined. '
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Limitations of Mechanical Strain Measurement

Polsson's ratio equal 1/2.- The method outlined sbove would seem
to solve the problem and offer a powerful method of. attack. Closer
examination discloses certain serious difficulties. For most of the

plastics used in this country Poisson's ratio is very nearly 1/2 at the

elevated temperatures used in the freezing process. If Poisson's rati
is taken as 1/2 then inspection of equation (L4a) shows that the denoml
nator vanishes and the equation is quite useless. The method evidentl
fails under these circumstances. This is a manifestation of the gener
proposition from the theory of elasticity which states that when Poiss
ratio is 1/2 a given strain field does not determine a unique stress
field, although the converse is not true. A given stress field does
determine s unique strain field.

Thus, when Poisson's ratio is 1/2 the general equations of Hooke'!
law may be written in the form below:

ox Eex + ciT

Oy

Eey + 01
~

]
wlin Wi wi

Oz

where

0.

x t O

+0'Z

O'i=

For this set of equations the determinant of the coefficients vanishes
and the matrix is of rank two. There are, therefore, infinitely many
solutions. Furthermore, these solutions differ from each other by arb
trary isotropic stress systems oy.

As already stated, in the method employing strain measurement aft
ennesling the procedure is to obtain photoelastically two expressions

(o]

¥
al

on's

]

Eey + 01 (52)

i~

er

giving the differences between the normal stress components and to combine

these with one expression based on the messurement of one strain €,
mal to the face of the slice. This yields the following equations:

nor-
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O, = Oy = sz
Oz = 9y = Cgy (5p)

As in the case of equations (5a) the determinant of the coefficients of
equations (5b) also vanishes and the matrix is of rank two. There are,
therefore, infinitely many solutions to equations (5b). Consequently,
the method of strain measurement after annesling fails when v = 1/2.
The situation is exactly analogous to that existing in photoelasticity
1tself where the principal stresses at a point can be determined only
up to an arbitrary isotroplc system. Strain measurement when v = 1/2
thus adds nothing to the genersl solutlon of the three-dimensionsl
problemn, ' . . }

Poisson's ratio nearly 1/2.- If Poisson's ratio is slightly less
then 1/2, the method of strain measurement after annealing should theo-
retically lead to a solution. However, other difficulties arise. Equa-
tion (L4a) may be written as

_ Eey - v(cgy + Coy)
oz = (1 - 2v) (o)

If v 1s the true value of Poisson's ratio and VvV + AV is its experi-
mentally determined value, then the error Ao, in the computed stress

oz' = oy + A0, for a measured €, is
[] AV {
6z' - Oy = Aoy = ox + © 6a
b4 b4 Z =TT v - o X y) (6a)

With v very close to 1/2, a very small error AV in Polsson's ratio
may lead to large errors Aoy in the computed stress. For instance,
if v =0.48 1is assumed, which is the approximate value for Fosterite,
and AvV 1is teken as only 0.0l, then

0.01
0.02

g = (ox + oy) = 0.50(ox + oy) (6b)
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Experimental measurements of v.- Experiments with the determination
of Poisson's ratio for Fosterite and similar plastics indicate that it
will be rather difficult to determine the value of V closer than
%5 percent. The error Acy in equation (6b) would be particularly lerge

when ox and oy happen to be of the same sign and each is large in
comparison with ¢z. All things considered, no great accuracy can be
expected from this method so long as Poisson's ratio is nearly 1/2.

It must be pointed out, however, that strain measurements may serve
a useful purpose. Assuming that, in some way or other, the normal stress
components have been found, the strains cen be calculated and compared
with those found experimentally. Here the error in the computed strains
due to an error in Poisson's ratio is given by

De, = -%(cx + 0y )Av (1)

which is not large.

Method Suggested by Prigoroveky and Preiss

The method outlined sbove for the separation of the principsl
stresses which employs oblique and normal incidence of collimated polar-
ized light and strain measurément after annealing is not the only possi-
ble procedure. Prigorovsky and Preilss suggest two alternative methods
in reference 1. Their procedures combine (1) stress patterns from nor-
mal and oblique incidence with (2) axis patterns from convergent polar-
ized light and (3) strain measurements after ennegling., The significant
point lies in the fact that the final equations obtained from their pro-
cedures have identicelly the same limitations as equations (5).

THEORY OF SHEAR DIFFERENCE METHOD

General theory.- A method for determining stresses in three-
dimensional problems is now proposed which is completely general. With
this method the six stress components at any point may be found. It is
essentlally en extension to three dimensions of the method, long and
effectively used for plane problems, which is known as the shear differ-
ence method (reference T, ch. 8).




10 - o . .NACA TN 2822

Consider an arbitrarily loaded unsymmetrical model wilth the set of
coordinate axes as shown in figure 3. Let & straight line AB be drawn
through point (1) from boundary to boundary and let this line be taken
as the X-axls., At any point-along this line the first—differential equa-
tion of equilibrium, with body forces neglected, is

9% + OTyx + OTax =0 (8)
ax oy dz

and upon Integration the stress at any point (J) is given by

. . .
(ox)3 = (ox)g -f a—g? ax -f a;:x ax (9)
a &8

where (ox)s denotes the stress at point—A and (ox)j, the stress at

oT.
any other point (J) on the line AB. The partial derivative _SZE is the
: Y
o,

is the rste of
zZ

change of T,, with respect to =z. Thus if values of Tyx Wwere computed
along a line through (1) parallel to the Y-axis and the curve Tyx = f(y)

rate of change of Tyx with respect to y and

a'r.yx
were plotted, then |—=—
’ oy /1
OT oy
S is the slope of the curve Tzx = g(z)
z/1

at point—(i). As in the plane problem, these slopes may be approximated
by computing the shearing stresses at points near (i) on opposite sides
of the line AB and forming finite difference quotients. Thus, choosing
neighboring points C and D In the XY-plene and similarly points E and F
in the XZ-plane,

would be the slope of the curve f(y) at

point (i). Similerly (

ATyx . (Tyx)C - (Tyx)D _ ATy%)
(By)i_ &y '<AV 1 (102)
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(2s), « oo = Cale_ () (100)
oz /i Az Az /i

Thus if the shearing stresses can be determined along four auxiliary
lines, parallel to and on opposite sides of AB, two lines in the XY¥-plene
and two in the XZ-plene, one has all the data necessary to obtain the
quotients on the right side of equations (10) and hence good approxima-
tions to the partiael derivatives. In evaluating equations (10), care
must be taken to attach the proper signs to the shear systems Tyx and

Tgx, as in figure 1.

Substituting the above approximstions for the partial derivatives
in equation (9) and replacing the integrals by summations, the following
equation is obtained:

Jd Ar AT
(ox)g = (ox)g - % —A;ZAX - ‘%‘ Azx &% (112)

The summsations are evaluated graphically in the same manner as in plane
problems. For convenience, Ay and Az may be tsken equal to Ax.
Then equation (1lla) becomes

J J
(0g)y = (0g)g £> Oy > ATpy (111p)
’ a a

in which AT and AT

yx — havelthe mean value in each interval Ax.

Shearing stresses in first slice.- In order to carry out this
integration, it is necessary to determine the magnitude and direction
of the shearing stresses Tyx along the two auxiliary lines in the

XY-plane and of Tgzx &long the two auxiliary lines in the XZ-plane.
The shearing stresses Tyx are obtained from & slice in the XY-plane

containing AB in its middle surface. The stress pattern of this slice
from normal. incldence will give the difference between the secondary
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principal stresses in the plane of the slice at—all points, and the
corresponding isoclinics furnish their orilentation, The magnitude of . -
the shearing stress Tyx at any point will then be given by

Tyx = %—(p' - q') sin 2¢° (129_‘)‘

where p' and gq' are the secondery principal stresses in the XY-plane
and ¢' is the isoclinic parameter. The directions are determined by
inspection as in paragraph 8.2.of reference 7. Using equation (1l2a),

the shearing stresses Tyx &long the auxiliary lines and along AB itself

may be found.

Shearing stresses in second aslice.- A second slice lying in the
XZ-plane and contwiming line AB would furnish similar information for
Tzx. Here a practicael difficulty arises since the first slice removes
an essential part of the second slice. One of several procedures may
be used to eliminste this difficulty.

(1) In the general case two identical models, ildentically loaded,
may be used, one for the XY slice and ane. for the XZ slice. The shearing
stresses Tyx for the XY slice are calculated from equation (128). Simi-
larly, the shearing stresses Tgygx for the XZ slice are given by

o = 3(p" - ") sin 2" (o)

where p" and gq" are the secondary principal stresses and @" is the °
isoclinic parameter in the XZ slice.

(2) In lerge modéls it may be possible to use & sub slice from the
main slice for determining Tgyy. After the data are obtained from the

main slice, a small section containing the line AB is cut from it, as
shown in figure 4(a). The necessary data in the XZ-plane are then
obtained from normal incidence on the sub slice, as shown. This procedure
is feasible if the model is large so that the main slice can be made of
sufficlent thickness.

(3) In the particular case where a plane of sfress symmetry exists,
such as the XY-plane in figure 4(b), advantage can be taken of-this
symmetry. Referring to figure 4(b), let it be assumed that the stresses
on line AB are required. The first slice is made parallel to the
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XY-plane end contains the line AB as shown in figure 4(c). The orthogo-
nael slice is cut from the opposite gide of the body so that 1t contains
the symmetrically placed line A'B', along which the stresses are the
same as along AB itself. The necessary shearing stresses are calculated
as outlined in procedure (1), above.

Normel stresses.- The starting value (ox)g Will be obtained from

boundary conditions and boundaery fringe orders. The integration may
then be carried out and values of ox obtained along AB. Further, from
Mohr's circle or other considerations:

(ox - cy)j (p' - q')J cos 2525':j 2F'n’J cos 2¢'j (13a)

1t

(ox - _oz)J (p" - q")J cos 2¢"j 2F"n"J cos 2¢"J (13b)

where the F's and n's denote, respectively, fringe value of the model
in shear and fringe order at point (J). From equations (13a) and (13b)

(Uy)J (UX)J - (p' - Q')J cos 2¢'J (13¢)

(0z)y = (O'x)J - (2" - "), cos 2¢"3 (138)

A1l the necessary data for the evaluation of (Uy)j and (oz) are
obtained from the slices in the XY- and XZ-planes, respectively.

Use of oblique incidence.- At this stage five of the six stress
components, namely ox, Oy, Oz, Tyx, 8and Tgzx, have been found at
all points of AB. There remains one unknown stress component Tygz. The
shear system Tyz has no influence on the stress patterns from normal

incidence for either one of the slices but will have an effect on the
patterns from oblique incidence.

In order to find the shear system Tyz an oblique stress pattern is
obtained from either bne of the two glices. For concreteness assume that
the slice parallel to the XY-plane is used and that it is rotated in a
clockwise direction about the Y-axis through an arbitrary angle 0.
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Figure 5 shows a view of a small element as seen from the positive end of the Y-axis. From
equation (1) the fringe order ngy at any point due to the oblique incidence is given by

I 2

'ngly — VBV - (mx cos?o + ng 8in%9 - nzy sin EG?I

. . \2
+llnyx‘cose-n gin 6
cos 8 ( ¥z )

(1ha)

in which n,, n,, and n, are the known normal stresses and n., and n,, are the known

o

shear systems in fringe units. Also, the isoclinic parameter ¢9y for the oblique incidence
is given by the expression ' ’

1
E(nyx cos 6 - 1., sin e)

ney cos 60

sin 2¢9y = (15a)

If the rotation about the Y-axis be made in the counterclockwise direction then

2
2
coi 6\/E1y - (nx cos28 + ng sin®6 + ngy sin 2@] + ll-(nyx sin 6 + nyz cos 9)

(1bb)

ngy =

goge NI VOVN
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and

2(nyy cos 6 + nyx sin 6) (15b)

sin 2 =
¢6y ngy cos 6

Similer equations may be written for rotation of the slice parallel to
the XZ-plane about the Z-axis.

It 1s to be noted thet in general the retardation observed at any
point depends on the direction of rotation of the slice. For one direc-
tion of rotetion the fringe order at a point will be different from its
value for the other direction. In the particular case when the slice
contains a principal plane, then T,y =T, = 0 and equations (14a) and
(1kb) become identical. In such cases the direction of rotation is imma-
terial. TIn deseling with general slices it is important to note carefully
the direction of rotation relative to the wave normal and to attach the
proper signs to all the stresses,

Each of equations (1lhka), (1kb), (15a), and (15b) may be solved for
the unknown shear system nyz. It is necessary only to determine the
fringe order and the isoclinic parameter ¢6y along the line AB, If
the rotatioh is counterclockwise equation (14b) or (15b) is appropriate.
Of these, equation (15b) is much the simpler. Using equation (15b) and
6 = 45° +there is obtained

1
nyz = 5 ngy sin 2Poy - nyx (15¢)

With this, Nyy and Tyz = 2Fnyz are easily computed. All six com-
ponents of stress are thus determined for the point (i), and therefore

the principal stresses themselves are determined at the given point.

Stresses in the plastic range.- It should be noted that the method
described in this report is not limited to the elastic state., It is
equally valid in the plastic state of the model, provided the stress-
optic law for this range is kmown. This follows from the fact that the
only equations, in addition to the stress-optic law, used in this method
are the equations of equilibrium, which are independent of stress-strain
relations., It should, however, be noted that the results will apply to
the model only and that they are not directly transferable to the
prototype.
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Effectof Polsson's ratio.- In conclusion, it should be noted that
in transferring the results from three-dimensional photoelastic models
to metal prototypes the effect of Poisson's ratio will have to be con-
sidered. It is fortunate, as shown by the theoretical solutilons obtained
to date, that the effect of Pailsson's ratio on the most significant
stresses is small (references 19 and 20).

APPLICATION OF SHEAR DIFFERENCE METHOD TO
A DIAMETRICALLY COMPRESSED SPHERE

Description of Apparatus

The apparatus used in this investigation consisted of the following
1tems:

(1) An electric furnace with temperature controls and built-in
loeding freme with special Jigs

(2) An 8-inch photoelastic polariscope with a special immersion
tank

(3) An oblique incidence jig
(4) A Babinet-Soleil compensator

A photograph of the electric furnace is shown in figure 6. This is &
relatively large oven 46 inches high, 42 inches wide, and 19 inches deep.
It 1s fitted with automatic tempersture controls by means of which any
desired thermsl cycle could be imposed on the model, The furnace was
equipped with a bullt=in loading frame sulitable for the application of
all basic types of loading. .

A specilal loading Jig bullt for the investigation is shown in fig-
ure 7. It consisted of a smooth circular’ shaf't about 1/2 inch in diam-
eter passing through s pair of smooth, lubricated guide holes carefully
alined so that the exis of the shaft was perpendicular to the base. The
load was applied to the top of the shaft—through a hard steel bsll. This
Jjig was found to give almost perfect vertical loading and. the friction
wes negligible,

A speclal jig was also built for oblique incidence. The frame of
the Jig could be rotated about a vertical axis through any desired angle
which could easily be measured to one-tenth of a degree., The slice was
mounted in the fraeme of the Jjlg and the whole unit was placed in an
immersion tank with a suitable mixture of Halowax and mineral oll.
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The remaining equipment was standard epparatus in photoelastic
laboratories the descriptions of, which are aveilable in the literature.

Test Procedure

Model.- The sphere was machined from a cylinder of Fosterite which
was previously annealed to remove initial stresses. The machining was
carried out in a lathe. The rough cylinder of Fosterite was filrst turned
to a true cylinder. In order to form the sphere a tool bit was set in
a special jig riding on the carriage of the lathe. This blt could be
rotated gbout a vertical axis lying in the plane of the lathe centers.
The cutting was performed by swinging the tool bit by hand sround its
vertical axis while the cylinder was rotating, and the radius of the
sphere was slowly reduced by bringing the tool bit gradually closer to
its axis. In this way it was possible to shape the complete sphere
except for a relatively smell nipple near the chuck., The final dismeter
of the sphere was 3.313 * 0.002 inches.

Loading.- The sphere was placed in the loading jig and carefully
glined for diametral compressive loading. The model was then heated to
162° F in the electric furnace, the rate of heating being about 10° F
per hour. A load of 172 pounds was then applied to the model. After a
sogking period of about 2 hours the temperature was lowered at the rate
of 4° F per hour to room temperature. The final dilameter of the equa-
torial plane was found to be 3.334 inches and the load axis was measured
as 3.102 inches. Although relatively large deformastions were developed
in the loaded regions, the main body of the sphere was not notably dis-
torted from its original shape. The stress pattern of the whole sphere
in figure 8 shows that the loads and the stresses were rotationally

symmetrical.

Slicing.~ In preparation for slicing the center lines of all the
slices were carefully scribed on the sphere using the flat spots in the
loaded regions as datum plenes. The slices were then sawed out roughly
on a band saw to a.thickness of about 3/8 inch. They were subsequently
ground by hand to about l/8-inch thickness in most cases. Great care
was taken to keep the slices symmetrical with respect to their center
lines. -

Figure 9 shows the slicing plan. The first slice removed was
parallel to the equator and midway between the equator and the load
point. Then from the opposite side of the sphere & meridian slice was
removed., Next a slice containing the equatorial plane was cut. Finally
a slice parallel to the meridian slice and halfway out on the radius was
removed,
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Stress patterns and isoclinics.- The slices weFe mounted in the .
oblique incidence jJig and stress patterns at normal and oblique incidence
were recorded photographically. Typical stress patterns are shown in
figures 10 to 15. Most of the normal incidence patterns show very few - -
fringes. In order to obtain accurate data iy these cases s Babinet-

Soleil compensator was used to obtain the fringe-order distribution
along the lines of interest by point=by-point exploration. A black
cross was made on the screen to mark the point on which attention should
be centered. The model slice was then adjusted until the line of
interest on the image ran true on the intersection of the cross as the
straining frame was moved laterally. Then beginning at the-outer edge
and moving the straining frame by a known amount after each observation
the fringe-order was obtained at s series of points along the line.

From these data the curve of fringe-order distribution could be plotted.

EY

It may be noted that fractional fringe orders can also be obtained
by the Tardy method of compensation, the accuracy being comparsble with
that of the Babinet-Soleil compenssator. '

Isoclinic lines were recorded by one of two methods. For the over-
all picture the isoclinic lines were photogrephed in most cases (figs. 16
and 17). From the-photographs averaged sketches werée prepared and used
in making the calculations.  On several lines direct sketching of the
isoclinics was used with attention being confined to the particular line
of interest. Here the intersections of successive isoclinic lines with
the line of interest were obtained at very short intervals, from which
the distribution of the isoclinic perameters along the line could be
plotted. This method was found to be accurate and considersebly less
time consuming than the photographic method. White-light was used in
all isobclinic work:

In plane stress systems the isoclinic parameter at a point on a
free boundary is determined by the tangent to-the boundary at-the point,
The isoclinic parameter thus changes from point to point along the
boundary in general. This is not necessarily true for isoclinics of
secondary principal stresses. In the slice parsllel to the meridian the
secondary principal stresses at the boundary consist solely of one normal
stress 0z which is horizontal. The boundary is therefore a zero

isoclinic and no other isoclinic mey intersect the boundary at any point.

The higher-order isoclinics therefore all lie within the boundary forming
closed loops in this case, as shown in figure 1T7.

Fringe value.- The fringe value of the material was obtmined from a

small cylinder about 1/2 inch in diameter and l%—ipches long. This was

loaded in compression in the special loading jig used for the sphere and o
subjected to the same thermal cycle as the sphere. A portion of the
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cylinder was machined away to leave a V shape as shown in figure 18.
The resulting stress pattern was then photographed (fig. 19). The
V shape was used to make clearly visible the fringe of zero order
occurring at the sharp edge of the wedge. In the cylinder itself the
first few fringes crowd together near the boundary of the cylinder and
it is practically impossible to identify the zero fringe. From the
stress pattern in figure 19 it was a simple matter to plot fringe order
?gainst gosition, which for the wedge described is a straight limne

fig. 20).

In this way the fringe order at the point where the plane faces of
the V intersect the curved boundary of the cylinder could be accurately
determined. At the same point the thickness h could also be measured
accurately. With the messured fringe order and thickness the fringe
value 2f of the material was found to be 3.0 psi per fringe, per inch
compression.

Results

Interior stresses.- The stress distribution was obtained along six
lines passing through the interior of the sphere. The lines are indi-
cated in figure 21 by the letters A-A, B-B, C-C, D-D, E-E, and F-F. Thus
the six lines are defined as follows:

A-A intersection of meridian slice with equatorial slice

B-B intersection of meridian slice with slice parallel to equator

Cc-C . Intersection of slice parallel to equator with slice parallel
to meridien

D-D load line

E-E intersection of equatorial slice with slice parallel to
meridian

F-F Intersection of slice parallel to the meridian slice with a

meridlan plane perpendicular to the above two slices

In this problem advantage was taken of the symmetry of the sphere to
eliminate the need for two models as discussed in the theoretical part
of the report. In particular because of the rotational symmetry of the
stresses one meridian slice could be taken to represent all meridian
slices.

Typical calculatlon.- In order to make clear the application of the
method the complete calculations for line C-C will now be given. The
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evaluation of the stresses along this line requires all the generality
which would be encountered in & body devoild of symmetry. The basic
data for the determination of the stresses on this line are obtained
from the. stress patterns and isoclinics at~normal incidence of the two
slices defining the line C-C and from the stress pattern and isoclinics
of one of the slices at oblique incidence with rotation about an axis
perpendicular to C-C and lying in the plane of the plate.

Because of the symmetry of the stresses along C-C it is necessary
only to deal with half the length of the line. This half length was
divided into 10 equal subdivisions. The two necessary auxiliary lines
were drawn parallel to it in each of the two orthogonal planes and
spaced the length of one subdivision apart:-

The first step is to obtain the distribution of the shearing
stresses along line C-C and along the four auxiliary lines. This
requires the determination of the distribution of the secondary principal
stress differences and of the isoclinics along these lines. Figure 22
shows the curves of n'" and @" for the slice parallel to the meridian,
and figure 23 shows n" and @" for the slice parallel to the equator.
With these data the required shearing stresses are computed at—each
division point of C-C. Thus, following equations (12)

n" sin 2¢™ (16a)

By =

VTS

V) [

N, n" sin 2¢g" (161v)

It will be noted that for positive values of 2z the shear systems nyy
and nyx, are positive. '

As noted in the-theoretical part-of the report the integration
requires the use of the difference between the shearing stresses at the
center of each subdivision. These differences are obtained from the
curves representing the distribution of the shearing stresses Jjust
found. Figure 24 shows the curves of the shear differences for the two
slices. - : S . : : :

The next step is to obtain the value-of the normasl stress n, at-

each division point by an integration of one of the differential equations
of equilibrium. The integration i1s carried out by approximation using
summetions to replace the integrals. The appropriate equation for

line C-C is similer to equation (11la), that is, ’
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3 i .
(pz); = (22)c - ; e zc—_ ny, 22 (17a)

Choosing Ax = Ay = Az the ratios of these quantities are unity. The
signs of the ratios depend on the choice of axes and the direction of
integration. The integration begins at the boundary and proceeds inward.
Consequently Az is negative. The shear differences have been formed
in such a way that Ay 1s positive and Ax negative. The final form
of the equation is therefore

J J

(72); = (nz), + 2;: Moy, - E;: Loy, (17b)

The signs of the shear differences are as shown by the curves.

In order to start the integration the value of (nz)c is required:

This must be determined from the boundary conditions and boundary fringe
orders. From the fact that the boundary is unloaded it is evident that
the principal stress normal to the boundary is zero. Inspection of the
meridian slice shows that, excepting the loaded regions, the boundary
stresses in the meridian section are also zero. The fringe order at the
boundary of the slice parallel to the equator is 0.58 fringe tension,
and the direction of this stress mekes an angle of 55.6° with line C-C.
The boundary value of n, is thus found from the equations of stress

transformetion as follows:
(nz)c = 0.58 cos?55.6 = 0.185 (18)

The expression for (nz)j therefore takes the form

J J
(nz)j = 0.185 + E;: Anyz - E;: Moy, {17c)

The integration is easily carried out in tabular form as shown in
table I. ) ' '

Once n; has been found the values of ny and ny are found from
expressions similar to equation (13c), that is,
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=mn, - n" cos 2¢" (19a)

[=]
]
I

A

ny = ny - n" cos 2¢™ (19p)

This computation is shown in table IT.

The lest step is to determine the remaining shearing stress
system Dyye This wes obtained in this case from oblique incidence

on the slice parallel to the meridian with rotation through 45° about
the Y-axis. Figure 25 shows the fringe order and isoclinic distribu-
tions along C-C for this case. With these data and the known values

of . Ny previously determined the required shearing stress component

is found from an expression similar to equation (15c). Thus

_ 1 .
Nyy = > Do sin 2¢9y - nyz ) (20)

The results of this computation are shown in table III. This completes
the solution for all six stress components along line C-C. In order

to determine the stress components in pounds per square inch it is
necessary only to multiply the stresses in fringes by the proper fringe
value of the slice. ' ) S

Using methods similar to those Jjust explained the stress components
for all six lines have beeh determined. With the exception of line D-D
integration began at the boundary and proceeded inwerd. For line D-D
the starting point—was taken as the center of the sphere and integration
proceeded upwerd. The" starting value of. ny for this line was taken

to be that obtained from line A-A. The results of-these computations
are shown in figures 26 to 32. At the center of the sphere the stress
components were found to be oy = -2.59P/A and oy = 0, = 0.45P/A.

These values may be compared with the stresses at the center of a disk
under diemetral compression which are Oy = -1.91P/A and Oy = O.6hP/A.

Contact stresses at load points.- As noted previously the loads on
the sphere produced considerable iocal deformation which resulted in
flattened areas at the poles. Upon observation of the meridian slice
it was found that fringes and isoclinics were unusually clear right to
the loaded boundary. It was therefore possible to continue the integra-
tion all the way to the loaded boundary along lines normal to the areas
of contact and thereby to obtain approximations to the contact stresses.
The stress components at the ends of-line D-D represent the contact =
stresses at the poles, that is, at the centers of-the loaded areas. In
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order to determine, at least roughly, the actual distribution of the
contact stresses over the loaded areas two additional slices normal to
the loaded zones were cut from the remaining material of the sphere.
The intersections of these slices with the meridian slice then define
two lines parallel to line D-D which extend from line B-B to the loaded
boundary. Starting values were taken from the stress distribution on
line B-B previously obtained, and integration proceeded to the loaded
boundary in the usual fashion. In this way the contact stresses at two
points at different distances from the center were obtained. With these
three points the distribution of the normal stresses on the contact
surface could be pretty well determined. The shearing stresses acting
on the surface of contact were found from the values of n' and the
isoclinics ¢' in a meridian section in the region of contact. The
results are shown in figure 33, the directions of the shearing stresses
being from the poles outward.

Checks on accuracy.- Two types of checks are availsble in this
problem, static checks and checks between stresses on different lines.
Static checks were made from the stresses on lines A-A and B-B and from
those acting on a dismeter in the surfaces of contact. Since these
stresses are rotationally symmetrical the resultant force acting on the
equatorial plane and on the plane containing line B-B parallel to the
equator as well as on the plane of contact can be determined by integra-
tion. From the stresses on line A-A the resultant load on the equatorial
plane was computed as 176 pounds, which is 2.3 percent higher than the
applied load of 172 pounds. The stresses on line B-B gave a resultant
of 168 pounds which is 2.3 percent low. Lastly the resultant of the
normal stresses on the surface of contact was found to be 170 pounds,
or 1.2 percent low.

Points O' and 0y' (fig. 21) are common points on different lines.
The stresses at these points can be determined from each line and the
results compared. The stresses at O' were found by integrating along
line B-B and also by integration along the path AOQO'. From line B-B
the stresses were found to be ny = -4.08 and nx = n; = 0.40. From
the path AOO' they were found to be ny = -4.06 and nx = ny = 0.k2,
At 01' the stresses are found from lines C-C and F-F. From line C-C
the stresses were computed as Dy = -1.12, n, = -0.36, n, = 0.43, and

ngy = 0.62. From line F-F they were ny = -1.14, ny = -0.39, n, = 0.0,
and nyy = 0.66. The agreement in these values is seen to be quite good.

It is also possible to compute the stresses on lines C-C and E-E
from the stresses on lines A-A and B-B. Figure 34 shows the rectangular
stress components on lines C-C end B-B. The necessary equations for
transformation are similar to the familiar equations for inclined plenes
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in plane stress systems, that is,

_ Ox + Uy Ox - Uy' -
0g = 5 + 5—= CcO8 20 + Tyy sin 26 (21a)
SR Sl QPP 28 (21b)
g = ‘T slin _- Txy [ef 0]

The stresses computed by transformation were compared with the stresses
independently determined on.lines C-C and E-E by integration. The com-
parative values are shown in figures 28, 29, and 31. The general agreé-
ment is seen to be excellent.

Check by the lLamé-Maxwell equations.- Lines A-A and D-D are lines
of symmetry for the sphere. For these special lines the stresses can
be computed by the method outlined by Jessop (reference 17) using the
extension of-the Lamé-Maxwell equations to three dimensions. This
computation has been carried out using fringe orders from the meridian
and equatorial slices gnd the 50 isoclinic from the meridian slice.

The comparative values are given in figure 26 for line A-A and filgure 30
for line D-D. Imspection othhe Tigures shows that in both cases the
agreement 1s close.

Anslysis and Discussion

The prinéry objective of the project under discussion was to develop
a general method for solving three-dimensional problems photoelastically.
In the theoretical part of this report such a method is described. The
experimental work shows that the proposed method is practical.

It-is too early to draw broad conclusions regarding the general
accuracy of-the new method. However, the excellence of the static. checks
and the consistency of the results, as shown by the close cross checks
between the results from the various lines, seem to indicate possibil-
ities of high accuracy. Unfortunately there is as yet no theoretical
solution available for this particular problem to furnish conclusive
checks and a measure of the errors. Nevertheless there is a reasonable
degree of certainty that-the major stresses are free from significent
error.

It must be pointed out that the stresses as found here represent
the solution for a material for which Poisson's ratio 1s 0.48, whereas
most structural materials have Poisson's ratios of-about 0.3. This is
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an inherent limitation of three-dimensional photoelasticity. However,

as noted previously, the theoretical solutions available to date indicate
that Poisson's ratio has only a small influence on the major stresses
although the effect on the minor stresses may be pronounced (refer-
ences 19 and 20).

Although no theoretical solution is available for the sphere
Hertz's solution casn be used to check the contact stresses determined
photoelastically. According to Hertz's solution the contact pressure
is representable by the ordinates to a hemisphere erected on the contact
surface. Further the Hertz theory predicts that the maximum contact
pressure should be 1.5P/Ac. Reference to figure 33 shows, that the
experimentslly determined value of the maximum pressure is 1.53P/Ac,
which is 2 percent high. When it is considered that the path of integra-
tion used in determining the maximum pressure led along an equatorial
radius to the center and thence up the load axis to the surface this is
indeed & remarkable check. The general distribution of the pressures
is also seen to be substantially correct. The proposed method would
therefore seem to hold considerable promise for the determination of
contact stresses. :

According to the Hertz theory the two principal stresses in the
plane of the contact surface at the pole, oy and 0,, should each
1+ 2v
equal —?férf?_dy. 'S :
Ox = 0, = Uy which indicates that an isotropic point exists at the pole,
and therefore the shearing stress is zero at this point. This is borne
out by the photoelastic results.

For Poisson's ratio of 1/2 this reduces to

Along the circular boundary of the surface of contact the stress
consists of a pure shear of the amount (l—€;22)£%
Hertz theory. If Poisson's ratio is 1/2 this expression vanishes.
Hence the normal and shearing stresses at the boundary should be zero.
The photoelastic results are seen to give this value.

according to the

The problem trested in this report has complete rotational symmetry
which simplifies the experimental technique by eliminating the use of
two models. No problem has as yet been solved which requires two models.
The use of two models will no doubt introduce complications, but no
insurmountable difficulties are anticipated. However, further work must
be done to demonsirate the effectiveness of the proposed method with two
models. - '

There remains also the possibility of using sub slices from the
main slice as discussed in the theoretical part. The model used in this
investigation was not large enough to maske this procedure feasible
although some attempts were made. This possibility also needs to be

further explored.
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It will perhaps also be desirable to repeat the solution of the --
sphere with smeller loads in order to reduce the relatively large local
deformetions. - - o B C T

SUMMARY OF RESULTS

. 1
The results from this investigation to develop a general method for
three-dimensional photoelastic stress analysis may be summarized as
follows:

1. The method of straln measurement after annealing cannot be used
with the materials now available in this countzry.

2. A general photoelastic method of obtaining six stress components
at any polnt of an unsymmetrical body arbitrarily loaded has been
developed. This method does not depend on Poisson's ratio, although the
results reflect the physical constants of -the model.

3. The new method is applicable in the plastic range of the model.

k., The method shows possibilities for the determination of .contact
stresses, o .

5. The stresses existing in a sphere subjected to diametral com-
presslon have been determined with considerable accuracy.

6. At the center of the sphere the stress components were found to
be 0y = -2.59P/A and oy = 0, = 0.45P/A, where P is the load on the

sphere and A 1is the area of the equatorial plane of the sphere. These
values may be compared with the stresses at the center of a disk under
diametral compression which are o0y = a1.91P/A and 0Oy = 0.6hP/A.

7. Further work is needed to determine the full potentialities of
the method when two models are used. Further work is also needed to
determine the practicability of sub slices.

Illinois Institue of Technology
Chicago 16, I1l., September 15, 1951
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TABIE I

NUMERICAL INTEGRATION OF DIFFERENTIAL

EQUATION (17c) FOR LINE C-C

z Mean Mean n

coy' Anyg Abyy 2

0 0.431
0.012 -0.009

0.1 0.5410
0.025 -0.024

0.2 0.361
0.030 -0.03%L

0.3 0.29
0.028 -0.038

0.h 0.231
0.021 -0.038

0.5 0.172
0.009 -0.033

0.6 0.130
0.001 -0.024

0.7 0.105
-0,00k -0.01L

0.8 ] 0.095
-0.019 -0.001 _

0.9 0.113
-0.060 0.012 .

1.0 0.185

29
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TABIE ITI

CALCULATION OF NORMAIL. STRESS COMPONENTS FOR LINE C-C

" " m
ng | n" |cos 2¢"| n™ |cos 2™ |n, - nx|nz - ny| ny | ny

(1) (2) | (3)] (&)

0.43{0.79| 1.000 {1.55{ 1.000 | 0.79 1.55 -0.36]-1.12

0.41]0.79| 0.957 [1.52| 0.993 0.76 1.51 -0.35]-1.10

0.36]0.78] 0.841 |1.43] 0.972 | 0.66 1.39 -0.30{-1.03

0.30]{0.77{ 0.674 |1.30| 0.942 | 0.52. l.22 -0.22]| -0.92

0.23{0.76| 0.488 |1.16| 0.906 | 0.37 1.05 |[-0.14]-0.82

.6 |0.13}0.70| 0.122 |0.84| 0.827 | 0.08 | 0.69 | 0.05|-0.56

0.17{0.7%}| 0.302 [1.00| 0.863 | 0.22 0.86 {-0.05|-0.69

0.10|0.66 [-0.035 [0.70| 0.809 [-0.02 0.57 0.12|-0.47

0.10]0.62|-0.167 |0.56] 0.819 {-0.10 | 0.46 [ 0.20(-0.36

0.11]0.60[-0.282 {0.40] 0.866 |[-0.17 0.35 0.281-0.24

0.18/0.591-0.375 j0.18] 1.000 |-0.22 0.18 0.hk0] 0

lnz - ny = n" cos og".
2nz - ny = n" cos 2¢".
3nx =N,z - (nz - Dx).
hny =1, - (ng4 -.ny).
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TABLE IIT

CAICULATION OF SHEARING STRESS BY OBLIQUE INCIDENCE FOR LINE C-C

@—Oz_l" gy 280y % ngy sin 2@gy Ny ?JB,
0 2.22 34.8 0.63 0 0.63
0.1 2,1k hi.o 0.70 0.09 0.61
0.2 1.99 L7.4 0.73 0.17 0.57
0.3 1.82 54.8 0.74 0.22 0.52
0.4 1.63 61.4 0.71 0.25 0.k46
0.5 1.h2 65.6 0.65 0.25 0.0
0.6 1.20 67.0 0.55 0.2k 0.31
) 0.7 0.99 66.0 0.45 0.21 0.24
0.8 0.79 62.0 0.3k 0.16 0.18
0.9 0.55 49.0 0.20 0.10 0.10
1.0 0.28 o 0 o 0

1 % ngy sin 2¢6y = Dyg-

Dyy =
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Figure 1.- Positive normal stregs components and positive systems of
shearing stresses.
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Figure 2.- Necessary slices and directions of light for determination of
surface stresses. L, direction of light.



y sl T
E

i/ 0/
I:/ /B

ir )
N

>

>
\g\

NN

///7/////////
7
C /]

AY m )

f

-

Figure 3.- Auxilisry lines in XY- and X7Z-planes for shear difference

method.
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(b) Loaded model. (c¢) Slices from opposite sides of
plane of symmetry.

Figure k4.- Schematic diagram of necessary slices.

ccge NI, VOVN

A



\,KO% T){L'_ Ox > \<

T

AKX

Figure 5.- Normal incidence and oblique incidence for different direc-
tions of rotatlon.
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" Figure 6.~ Electric furnace and control panel.
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Figure 8.- Stress pattern

of whole sphere,

NACA TN 2822
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Figure 9.~ Slicing plan for sphere. 1, slice parallel to equator;
2, meridian slice; 3, slice parallel to meridian; and 4, equa-
torial slice. :
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NACA

Figure 10,- Stress pattern of meridian slice at normal incidence.

A

Figure 11.-~ Stress pattern of meridian slice for a rotation of h5° about
Y-axis.
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SNAGA

Figure 12.- Stress pattern of slice parallel to equator at normal
incidence.

Figure 13,- Stress pattern of slice parallel to equator for a rota-
tion of 45° about X-axis.
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NACA

Figure 1li,~ Stress pattern of slice parallel to meridian at normal
incidence.

SNAA

Figure 15.- Stress pattern af slice paraiielﬂfd meridian for'a"rofation-'
of 45° about Y-axis.
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Figure 16.- Typical isoclinic for meridian slice.

Figure 17.- Typical isoclinic for slice parallel to meridian. _ﬂ@ﬁ
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Figure 18.- Cross section of calibration member after machining of wedge.

Figure 19.- Stress pattern of calibretion member. |'E|
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Figure 20.- Fringe order for calibration member as a function of distance
from edge of wedge.
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Figure 21.- Lines in sphere along which stress distributions were -
determlned.
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Figure 22.- Distribution of fringe order n''' and isoclinic param-
eter §''' for line C-C and two suxiliary lines in glice parallel
to meridian. In curves IT and ITIY the letter C denotes the
X-coordinate of line C-C. '
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Figure 23.- Distribution of fringe order n'' and isoclinic parem-
eter @'' for line C-C and two auxiliary linee in slice perallel
to equator. In curves II and IIT the letter ¢ denctes the
Y-coordinate of line C-C.
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Shear Difference, Fringes
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Figure 24, - Distribution of shear differences Anyy and Angy for
line C~C.

ccge NI VOVK

&4



50 NACA TN 2822

2.4 48
Fringe Order

n
o
2.0\ il 40

Isoclinic ¢e
Y
1.6 )—\\ 32 >

N

100)

Fringe Order, Moy
AV
D
Isoclinic Paramefer,<|> ,Deg

; \
EEEEN

N 8
0 0o
o 2 4 6 1.0
Z
co,

Figure 25.- Distribution of ng, and ¢9y along line C-C for a 45°
rotation of slice parallel to the meridlan sbout the Y-axis.
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Figure 26.- Distributlon of normel stresses along line A-A.
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Figure 27.- Distribution of stresses along line B-B.
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' Figure 28.- Distribution of normal stresses along line C-C.
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Figure 29.- Distribution of shearing stresses along line C-C.
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Figure 30.- Distribution of stresses along line D-D.
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Figure 31.- Distribution of stresses along line E-E.
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Figure 32.- Distribution of stresses along line F-F.

ccgc NL VOVN

Lg




58 ' ' NACA TN 2822

- ‘ O\
ol 7 / \
- n | - yz__>

// \\

0 l=—" '

o 2 4 6 .8 1.O

Z
Re

Figure 33.- Distribution of stresses on surfaces of contacts
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Figure 3L4.- Sketch relating stress components &t a2 point on line B-B to
to those on line C-C.
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